English

Using the Method of Integration, Find the Area of the Triangular Region Whose Vertices Are (2, -2), (4, 3) and (1, 2). - Mathematics

Advertisements
Advertisements

Question

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).

Solution

Equation of line AB : -

`y+2=(2+3)/2(x-2)`

⇒ 2y = 5x - 14

Equation of line BC : -

`y-3=1/2(x-4)`

⇒ 3y = x + 5

Equation of line CA : -

(y - 2) = - 4 (x - 1)

4x + y = 6

∴ ar (ΔABC)

`=int_(-2)^3(2y+14)/5dy-int_2^3 3y-5dy`

`=75/5-5/2-24/4`

`=(300-120-50)/20=130/20`

=`13/2`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0


Using integration, find the area of the region bounded by the line y − 1 = x, the x − axis and the ordinates x= −2 and x = 3.


Make a rough sketch of the graph of the function y = 4 − x2, 0 ≤ x ≤ 2 and determine the area enclosed by the curve, the x-axis and the lines x = 0 and x = 2.


Sketch the graph of y = \[\sqrt{x + 1}\]  in [0, 4] and determine the area of the region enclosed by the curve, the x-axis and the lines x = 0, x = 4.


Sketch the graph y = | x + 3 |. Evaluate \[\int\limits_{- 6}^0 \left| x + 3 \right| dx\]. What does this integral represent on the graph?


Find the area of the region bounded by x2 = 16y, y = 1, y = 4 and the y-axis in the first quadrant.

 

Find the area of the region bounded by the curve \[a y^2 = x^3\], the y-axis and the lines y = a and y = 2a.


Find the area of the region bounded by \[y = \sqrt{x}, x = 2y + 3\]  in the first quadrant and x-axis.


Find the area bounded by the curves x = y2 and x = 3 − 2y2.


Using integration find the area of the region:
\[\left\{ \left( x, y \right) : \left| x - 1 \right| \leq y \leq \sqrt{5 - x^2} \right\}\]


Find the area of the region between the parabola x = 4y − y2 and the line x = 2y − 3.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area of the region \[\left\{ \left( x, y \right) : x^2 + y^2 \leq 1 \leq x + y \right\}\] is __________ .


Area bounded by the curve y = x3, the x-axis and the ordinates x = −2 and x = 1 is ______.


Find the area of the region bound by the curves y = 6x – x2 and y = x2 – 2x 


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32 is ______.


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


If a and c are positive real numbers and the ellipse `x^2/(4c^2) + y^2/c^2` = 1 has four distinct points in common with the circle `x^2 + y^2 = 9a^2`, then


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9` = 1.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area of the region bounded by curve 4x2 = y and the line y = 8x + 12, using integration.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Let P(x) be a real polynomial of degree 3 which vanishes at x = –3. Let P(x) have local minima at x = 1, local maxima at x = –1 and `int_-1^1 P(x)dx` = 18, then the sum of all the coefficients of the polynomial P(x) is equal to ______.


Using integration, find the area of the region bounded by y = mx (m > 0), x = 1, x = 2 and the X-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×