हिंदी

Using the Method of Integration Find the Area of the Region Bounded by Lines: 2x + Y = 4, 3x – 2y = 6 And X – 3y + 5 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0

उत्तर

The given equations of lines are

2x + y = 4 … (1)

3x – 2y = 6 … (2)

And, x – 3+ 5 = 0 … (3)

The area of the region bounded by the lines is the area of ΔABC. AL and CM are the perpendiculars on x-axis.

Area (ΔABC) = Area (ALMCA) – Area (ALB) – Area (CMB)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.3 | Q 14 | पृष्ठ ३७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y − 2.


Sketch the region bounded by the curves `y=sqrt(5-x^2)` and y=|x-1| and find its area using integration.


Find the equation of a curve passing through the point (0, 2), given that the sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at that point by 5


Find the area of ellipse `x^2/1 + y^2/4 = 1`

 


Find the area lying above the x-axis and under the parabola y = 4x − x2.


Draw a rough sketch to indicate the region bounded between the curve y2 = 4x and the line x = 3. Also, find the area of this region.


Draw a rough sketch of the graph of the curve \[\frac{x^2}{4} + \frac{y^2}{9} = 1\]  and evaluate the area of the region under the curve and above the x-axis.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Find the area of the region common to the parabolas 4y2 = 9x and 3x2 = 16y.


Find the area of the region common to the circle x2 + y2 = 16 and the parabola y2 = 6x.


Find the area of the region included between the parabola y2 = x and the line x + y = 2.


Find the area, lying above x-axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x.


Prove that the area common to the two parabolas y = 2x2 and y = x2 + 4 is \[\frac{32}{3}\] sq. units.


Find the area enclosed by the curve \[y = - x^2\] and the straight line x + y + 2 = 0. 


Using integration, find the area of the triangle ABC coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).


Find the area of the region bounded by y = | x − 1 | and y = 1.


Find the area of the region {(x, y): x2 + y2 ≤ 4, x + y ≥ 2}.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


In what ratio does the x-axis divide the area of the region bounded by the parabolas y = 4x − x2 and y = x2− x?


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


Find the area bounded by the parabola y2 = 4x and the line y = 2x − 4 By using vertical strips.


Find the equation of the parabola with latus-rectum joining points (4, 6) and (4, -2).


Using integration, find the area of the smaller region bounded by the ellipse `"x"^2/9+"y"^2/4=1`and the line `"x"/3+"y"/2=1.`


The area enclosed by the circle x2 + y2 = 2 is equal to ______.


Find the area of the region bounded by the curve y2 = 4x, x2 = 4y.


Find the area of the region included between y2 = 9x and y = x


Find the area of the region bounded by the curve y2 = 2x and x2 + y2 = 4x.


Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x 2 + y2 ≤ 16a2}. Also find the area of the region sketched using method of integration.


Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.


The area of the region bounded by the curve y = sinx between the ordinates x = 0, x = `pi/2` and the x-axis is ______.


The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is ______.


Smaller area bounded by the circle `x^2 + y^2 = 4` and the line `x + y = 2` is.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Find the area of the region enclosed by the curves y2 = x, x = `1/4`, y = 0 and x = 1, using integration.


Let the curve y = y(x) be the solution of the differential equation, `("dy")/("d"x) = 2(x + 1)`. If the numerical value of area bounded by the curve y = y(x) and x-axis is `(4sqrt(8))/3`, then the value of y(1) is equal to ______.


Let f : [–2, 3] `rightarrow` [0, ∞) be a continuous function such that f(1 – x) = f(x) for all x ∈ [–2, 3]. If R1 is the numerical value of the area of the region bounded by y = f(x), x = –2, x = 3 and the axis of x and R2 = `int_-2^3 xf(x)dx`, then ______.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Find the area of the region bounded by the curve x2 = 4y and the line x = 4y – 2.


Using integration, find the area of the region bounded by the curve y2 = 4x and x2 = 4y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×