हिंदी

Using the Method of Integration Find the Area of the Triangle Abc, Coordinates of Whose Vertices Are A(2, 0), B (4, 5) and C (6, 3). - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

उत्तर

The vertices of ΔABC are A (2, 0), B (4, 5), and C (6, 3).

Area (ΔABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.3 | Q 13 | पृष्ठ ३७६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


The area of the circle x2 + y2 = 16 is ______


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×