हिंदी

Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.

विकल्प

  • `pi`

  • `pi/2`

  • `pi/3`

  • `pi/4`

MCQ
रिक्त स्थान भरें

उत्तर

Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is π.

Explanation:

Equation of a circle x2 + y2 = 4

Required ocean = Ocean of OAB

`= int_0^2 y  dx`

`= int_0^2  sqrt(4 - x^2)  dx  [(because x^2 + y^2 = 4),(=> y = sqrt(4 - x^2))]`

`= [x/2  sqrt(4 - x^2) + 4/2  sin^-1  x/2]_0^2`

`= [0 + 2 sin^-1 (1)] - (0 + 0)`

`= 2 xx pi/2`

= π Units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.1 [पृष्ठ ३६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.1 | Q 12 | पृष्ठ ३६६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Choose the correct alternative :

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Using the definite integration area of the circle x2 + y2 = 16 is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×