Advertisements
Advertisements
प्रश्न
Find the area bounded by the circle x2 + y2 = 16 and the line
उत्तर
The area bounded by the circle x2 + y2 = 16 , x =
Solving x2 + y2 = 16 , x =
⇒3y2 + y2 = 16
⇒4y2 = 16
⇒y2 = 4
⇒ y = 2 (In the first quadrant, y is positive)
When y = 2, x =
So, the point of intersection of the given line and circle in the first quadrant is
The graph of the given line and cirlce is shown below:
Required area = Area of the shaded region = Area OABO = Area OCAO + Area ACB
Area OCAO =
Area ABC =
=
=
∴ Required area =
APPEARS IN
संबंधित प्रश्न
Find the area of the region in the first quadrant enclosed by x-axis, line x =
Find the area under the given curve and given line:
y = x2, x = 1, x = 2 and x-axis
Find the area of the smaller region bounded by the ellipse
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).
Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
y =
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
Fill in the blank :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Choose the correct alternative:
Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______
State whether the following statement is True or False:
The area of portion lying below the X axis is negative
State whether the following statement is True or False:
The equation of the area of the circle is
Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8
Find the area of the region bounded by the curve y =
The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.
The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.
Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?
Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:
The area of the circle
The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.
The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.
Find the area between the two curves (parabolas)
y2 = 7x and x2 = 7y.
If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.