हिंदी

The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.

विकल्प

  • 9 sq.units

  • `26/3` sq.units

  • `52/3` sq.units

  • 18 sq.units

MCQ
रिक्त स्थान भरें

उत्तर

The area of the region bounded by the curve y = x2, x = 0, x = 3 and X-axis is 9 sq.units.

Explanation:

Area of region = `int_a^b y.dx  = int_0^3 x^2. dx`

= `[x^3/3]_0^3`

= `1/3 [3^3 - 0^3]`

= `1/3 xx 27`

= 9 sq.units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

संबंधित प्रश्न

Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area between the curves y = x and y = x2


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


The area of the circle x2 + y2 = 16 is ______


Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×