हिंदी

Find the Area Between the Curves Y = X and Y = X2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area between the curves y = x and y = x2

उत्तर

The required area is represented by the shaded area OBAO as

The points of intersection of the curves, y = x and y = x2, is A (1, 1).

We draw AC perpendicular to x-axis.

∴ Area (OBAO) = Area (ΔOCA) – Area (OCABO) … (1)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.3 | Q 2 | पृष्ठ ३७५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1.`


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Solve the following:

Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×