हिंदी

Find the Area of the Region Lying in the First Quadrant and Bounded by Y = 4x2, X = 0, Y = 1 and Y = 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4

उत्तर

The area in the first quadrant bounded by y = 4x2x = 0, y = 1, and = 4 is represented by the shaded area ABCDA as

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.3 | Q 3 | पृष्ठ ३७५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Find the area of the region bounded by the following curve, the X-axis and the given line:

y = 2 – x2, x = –1, x = 1


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


Find the area of the circle x2 + y2 = 16


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×