English

Find the Area of the Region Lying in the First Quadrant and Bounded by Y = 4x2, X = 0, Y = 1 and Y = 4 - Mathematics

Advertisements
Advertisements

Question

Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4

Solution

The area in the first quadrant bounded by y = 4x2x = 0, y = 1, and = 4 is represented by the shaded area ABCDA as

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.3 [Page 375]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.3 | Q 3 | Page 375

RELATED QUESTIONS

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Solve the following:

Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the circle x2 + y2 = 16 is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×