Advertisements
Advertisements
Question
Find the area between the curves y = x and y = x2
Solution
The required area is represented by the shaded area OBAO as
The points of intersection of the curves, y = x and y = x2, is A (1, 1).
We draw AC perpendicular to x-axis.
∴ Area (OBAO) = Area (ΔOCA) – Area (OCABO) … (1)
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by x2 = 4y, y = 2, y = 4 and the y-axis in the first quadrant.
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.
Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
Find the area of the region bounded by the following curves, the X-axis and the given lines: y = x4, x = 1, x = 5
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
y = `sqrt(6x + 4), x = 0, x = 2`
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4
Find the area of the region bounded by the following curve, the X-axis and the given line:
y = 2 – x2, x = –1, x = 1
Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.
Choose the correct alternative :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.
Fill in the blank :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
State whether the following is True or False :
The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Solve the following :
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2
Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8
Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3
If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.
The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.
Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?
Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:
If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree
The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.
Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.
If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.
The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.
Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.