English

Find the Area of the Region. {(X,Y) : 0 ≤ Y ≤ X2 , 0 ≤ Y ≤ X + 2 ,-1 ≤ X ≤ 3} . - Mathematics

Advertisements
Advertisements

Question

Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .

Sum

Solution

0 ≤ y ≤ x2 ; 0 ≤ y ≤ x + 2 ; -1 ≤ x ≤ 3 

 y = x2

y = x + 2

x2 =  x + 2  

x2 - x - 2 = 0 

( x - 2 ) ( x + 1) = 0

⇒ x  = - 1 , 2 

∴ Required area is area of shaded portion

`Delta = int_(-1)^2 (Y_"line" - Y_"parabola" ) dx + int_2^3 Y_"line"  dx`

`Delta = int_(-1)^2 ( x + 2 -x^2 ) dx + int_2^3 (x +2 ) dx`

`Delta = int_(-1)^2 [x^2/2 + 2x - x^3/3 ] + int_2^3 [ x^2/2 + 2x]`

`Delta = (2+ 4 - 8/3) - (1/2 - 2 + 1/3) + (9/2 + 6) - (2 + 4 ) `

`Delta = 10/3 + 2/3 +9/2`

`Delta = 4 + 9/2 = 17/2 ` Sq.units

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area of the circle x2 + y2 = 16 is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×