English

Find the Area of the Region Bounded by Y2 = 9x, X = 2, X = 4 and the X-axis in the First Quadrant. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.

Solution

The area of the region bounded by the curve, y2 = 9xx = 2, and x = 4, and the x-axis is the area ABCD

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.1 [Page 365]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.1 | Q 2 | Page 365

RELATED QUESTIONS

Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area of the region bounded by the following curves, the X-axis and the given lines:  y = x4, x = 1, x = 5


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines: y = `sqrt(16 - x^2)`, x = 0, x = 4


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


Choose the correct alternative:

Area of the region bounded by the parabola y2 = 25x and the lines x = 5 is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×