English

Find the Area of the Region Bounded by the Curve Y2 = X and the Lines X = 1, X = 4 and the X-axis. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.

Solution

The area of the region bounded by the curve, y2 = x, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.1 [Page 365]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.1 | Q 1 | Page 365

RELATED QUESTIONS

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line  `x = a/sqrt2`


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area between the curves y = x and y = x2


Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the following curve, the X-axis and the given line:

y = 2 – x2, x = –1, x = 1


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.


State whether the following is True or False :

The area of the portion lying above the X-axis is positive.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×