English

Using the Method of Integration Find the Area of the Triangle Abc, Coordinates of Whose Vertices Are A(2, 0), B (4, 5) and C (6, 3). - Mathematics

Advertisements
Advertisements

Question

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

Solution

The vertices of ΔABC are A (2, 0), B (4, 5), and C (6, 3).

Area (ΔABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.3 [Page 376]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.3 | Q 13 | Page 376

RELATED QUESTIONS

Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the following curve, the X-axis and the given line:

y = 2 – x2, x = –1, x = 1


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Choose the correct alternative:

Using the definite integration area of the circle x2 + y2 = 16 is ______


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×