मराठी

Using the Method of Integration Find the Area of the Triangle Abc, Coordinates of Whose Vertices Are A(2, 0), B (4, 5) and C (6, 3). - Mathematics

Advertisements
Advertisements

प्रश्न

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

उत्तर

The vertices of ΔABC are A (2, 0), B (4, 5), and C (6, 3).

Area (ΔABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.3 | Q 13 | पृष्ठ ३७६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1.`


Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line  `x = a/sqrt2`


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


State whether the following is True or False :

The area of the portion lying above the X-axis is positive.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×