मराठी

Find the Area of the Region Bounded by the Parabola Y = X2 and Y = X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the parabola y = x2 and y = |x| .

उत्तर

The area bounded by the parabola, x2 = y,and the line, y = |x| , can be represented as

The given area is symmetrical about y-axis.

∴ Area OACO = Area ODBO

The point of intersection of parabola, x2 = y, and line, x, is A (1, 1).

Area of OACO = Area ΔOAM – Area OMACO

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.1 [पृष्ठ ३६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.1 | Q 9 | पृष्ठ ३६६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


Solve the following :

Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


Find the area of the circle x2 + y2 = 16


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area bounded by the curve | x | + y = 1 and X-axis is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×