मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.

बेरीज

उत्तर

A = (Area below X-axis) + (Area above X-axis)

Required area A = A1 + |A2|

A = `int_-1^0 (-2x) dx + |int_0^2(-2x)dx|`

= `[-2 x^2/2]_-1^0 + [(2x^2)/2]_0^2`

= `[-x^2]_-1^0 + [x^2]_0^2`

= (0 + 1) + (4 − 0)

A = 5 sq. units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Official

APPEARS IN

संबंधित प्रश्‍न

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1.`


Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line  `x = a/sqrt2`


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Find the area of the region bounded by the following curves, the X-axis and the given lines: y = `sqrt(16 - x^2)`, x = 0, x = 4


Fill in the blank :

Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Solve the following :

Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by the parabola y2 = 25x and the lines x = 5 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


The area bounded by the curve | x | + y = 1 and X-axis is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×