मराठी

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`

उत्तर

The given equation of the circle is x2+y2=4.

The equation of the normal to the circle at (1,√3) is same as the line joining the points (1,√3) and (0, 0), which is given by

`(y−sqrt3)/x−1=(sqrt3−0)/(1−0)`

`(y−sqrt3)/x−1=sqrt3`

`⇒y−sqrt3=sqrt3x−sqrt3`

`⇒y=sqrt3x                    .....(1)`

So, the slope of normal is `sqrt3.`

We know that the product of the slopes of the normal and the tangent is 1

Therefore, the slope of tangent is `−1/sqrt3`

Now, the equation of the tangent to the circle at (1,√3) is given by

`(y−sqrt3)/x−1=-1/sqrt3`

`⇒sqrt3y−3=−x+1`

y=−(x+4)/sqrt3          .....(2)

Putting y = 0 in (2), we get x = 4.

Thus, ABC is the triangle formed by the positive x-axis and tangent and normal to the given circle at `(1,sqrt3)`

.

Now,

Area of ∆AOB = Area of ∆AOM + Area of ∆AMB

`=int_0^1ydx+int_1^4y dx`

`=int_0^1sqrt3xdx+int_1^4((-x+4)/sqrt3)dx`

`=[(sqrt3x^2)/2]_0^1+int_1^4-x/sqrt3dx+int_1^44/sqrt3dx`

`=(sqrt3/2-0)-[x^2/(2sqrt3)]_1^4+[4/sqrt3x]_1^4`

`=sqrt3/2-16/(2sqrt3)+1/(2sqrt3)+16/sqrt3-4/sqrt3`

`=sqrt3/2+(3sqrt3)/2`

`=2sqrt3`

Thus, the area of the triangle so formed is `2sqrt3` square units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Find the area of the region bounded by the following curves, the X-axis and the given lines:  y = x4, x = 1, x = 5


Find the area of the region bounded by the following curves, the X-axis and the given lines: y = `sqrt(16 - x^2)`, x = 0, x = 4


Fill in the blank :

Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


Solve the following :

Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×