हिंदी

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle - Mathematics

Advertisements
Advertisements

प्रश्न

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`

उत्तर

The given equation of the circle is x2+y2=4.

The equation of the normal to the circle at (1,√3) is same as the line joining the points (1,√3) and (0, 0), which is given by

`(y−sqrt3)/x−1=(sqrt3−0)/(1−0)`

`(y−sqrt3)/x−1=sqrt3`

`⇒y−sqrt3=sqrt3x−sqrt3`

`⇒y=sqrt3x                    .....(1)`

So, the slope of normal is `sqrt3.`

We know that the product of the slopes of the normal and the tangent is 1

Therefore, the slope of tangent is `−1/sqrt3`

Now, the equation of the tangent to the circle at (1,√3) is given by

`(y−sqrt3)/x−1=-1/sqrt3`

`⇒sqrt3y−3=−x+1`

y=−(x+4)/sqrt3          .....(2)

Putting y = 0 in (2), we get x = 4.

Thus, ABC is the triangle formed by the positive x-axis and tangent and normal to the given circle at `(1,sqrt3)`

.

Now,

Area of ∆AOB = Area of ∆AOM + Area of ∆AMB

`=int_0^1ydx+int_1^4y dx`

`=int_0^1sqrt3xdx+int_1^4((-x+4)/sqrt3)dx`

`=[(sqrt3x^2)/2]_0^1+int_1^4-x/sqrt3dx+int_1^44/sqrt3dx`

`=(sqrt3/2-0)-[x^2/(2sqrt3)]_1^4+[4/sqrt3x]_1^4`

`=sqrt3/2-16/(2sqrt3)+1/(2sqrt3)+16/sqrt3-4/sqrt3`

`=sqrt3/2+(3sqrt3)/2`

`=2sqrt3`

Thus, the area of the triangle so formed is `2sqrt3` square units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Choose the correct alternative :

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Solve the following:

Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the circle x2 + y2 = 16 is ______


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×