Advertisements
Advertisements
प्रश्न
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
उत्तर
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is `underlinebb(28/3)` sq. units.
Required area = `2int_1^4y*dx`
= `2int_1^4 2sqrt(x)*dx`
= `2[x^(3/2)/(3/2)]_1^4`
= `2[(2x^(3/2))/(3)]_1^4`
Substituting the values we get
= `2 = ((2(4)^(3/2))/3 - (2(1)^(3/2))/3)`
= `4 (8/3 - 1/3)`
= `4 (7/3)`
= `28/3` sq. units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
Find the area bounded by the curve x2 = 4y and the line x = 4y – 2
Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12
Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.
Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9 "at" (-1,2sqrt2)`.
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4
Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.
Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
Choose the correct alternative:
Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______
Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2
If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?
Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?
The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is
The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.
The area bounded by the curve | x | + y = 1 and X-axis is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).