Advertisements
Advertisements
प्रश्न
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
उत्तर
Given equation of the curve is
y = x2
∴ x = `sqrt(y)` ...[∵ In first quadrant, x> 0]
Required area = area of the region ORQPO
= 2 (area of the region ORQO)
= `2 int_0^10x*dy`
= `2int_0^10 y^(1/2)*dy`
= `2[y^(3/2)/(3/2)]_0^10`
= `(4)/(3)[(10)^(3/2) - 0]`
= `(4)/(3)(10sqrt(10))`
= `(40sqrt(10))/(3)"sq.units"`.
APPEARS IN
संबंधित प्रश्न
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Find the area between the curves y = x and y = x2
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 1 and y = 4
Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.
Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9 "at" (-1,2sqrt2)`.
Find the area of the region bounded by the following curves, the X-axis and the given lines:
y = x2 + 1, x = 0, x = 3
Choose the correct alternative:
Using the definite integration area of the circle x2 + y2 = 16 is ______
Choose the correct alternative:
Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______
State whether the following statement is True or False:
The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x) "d"x| + |int_"b"^"c" "f"(x) "d"x|`
Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2
Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3
Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2
Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.
The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.
The area bounded by the curve | x | + y = 1 and X-axis is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).