मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the area of the region bounded by the curve x = 25-y2, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5

बेरीज

उत्तर

Let A be the required area.

Given equation of the curve is x = `sqrt(25 - y^2)`

∴ A = `int_0^5 x  "d"y`

= `int_0^5 sqrt(25 - y^2)  "d"y`

= `int_0^5 sqrt((5)^2 - y^2)  "d"y`

= `[y/2 sqrt((5)^2 - y^2) + (5)^2/2  sin^-1 (y/5)]_0^5`

= `[5/2 sqrt((5)^2 - (5)^2) + (5)^2/2 sin^-1 (5/5)] - [0/2 sqrt((5)^2 - 0) + (5)^2/2 sin^-1 (0/5)]`

= `0 + 25/2 sin^-1 (1) - 0`

= `25/2 (pi/2)`

= `(25pi)/4` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.7: Application of Definite Integration - Q.2

संबंधित प्रश्‍न

Find the area of the region bounded by the parabola y = x2 and y = |x| .


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area between the curves y = x and y = x2


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


Solve the following:

Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Using the definite integration area of the circle x2 + y2 = 16 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×