Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4
उत्तर
Let A be the required area.
Consider the equation 2y + x = 8
i.e., y = `(8 - x)/(2)`
∴ A = `int_2^4 y*dx`
= `int_2^4 (8 - x)/(2)*dx`
= `(1)/(2) int_2^4 (8 - x)*dx`
= `(1)/(2)[8x - x^2/2]_2^4`
= `(1)/(2)[(8 xx 4 - 4^2/2) - (8 xx 2 - 2^2/2)]`
= `(1)/(2)(32 - 8) - (16 - 2)]`
= `(1)/(2)(24 - 14)`
= `(1)/(2) xx 10`
∴ A = 5 sq. units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.
Using integration find the area of the region {(x, y) : x2+y2⩽ 2ax, y2⩾ ax, x, y ⩾ 0}.
Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
Find the area of the region bounded by the ellipse `x^2/16 + y^2/9 = 1.`
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12
Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`
Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b = 1`
Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.
Choose the correct alternative :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.
State whether the following is True or False :
The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.
Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant
Find the area of the circle x2 + y2 = 62
Find the area of the circle x2 + y2 = 16
If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?
Find the area between the two curves (parabolas)
y2 = 7x and x2 = 7y.
Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.
If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.