Advertisements
Advertisements
प्रश्न
Using integration find the area of the region {(x, y) : x2+y2⩽ 2ax, y2⩾ ax, x, y ⩾ 0}.
उत्तर
Given:
x2+y2≤2ax, y2≥ax, x, y≥0
⇒x2+y2−2ax≤0, y2≥ax, x, y≥0
⇒x2+y2−2ax+a2−a2≤0, y2≥ax, x, y≥0
⇒(x−a)2+y2≤a2, y2≥ax, x, y≥0
To find the points of intersection of the circle [(x−a)2+y2=a2] and the parabola
[y2=ax],
we will substitute y2=ax in (x−a)2+y2=a2.
(x−a)2+ax=a2
⇒x2+a2−2ax+ax=a2
⇒x(x−a)=0
⇒x=0, a
Therefore, the points of intersection are (0, 0), (a, a) and (a, −a).
Now,
Area of the shaded region= I
Area of I from x=0 to x=a
`=[int_0^a(sqrt(a^2-(x-a^2)))dx-int_0^asqrt(axd)x]`
Let x−a=t for the first part of the integral `int_0^a(sqrt(a^2-(x-a^2)))dx`
⇒dx=dt
`:.A_I=int_(-a)^0sqrt(a^2-t^2)dt-2sqrta/3|x^(3/2)|_0^a`
`=|t/2sqrt(a^2-t^2)+1/2a^2sin^(-1)`
`=0-(-(pia^2)/4)-(2a^2)/3`
`A_I=(pi/4-2/3)a^2`
∴Area of the shaded region = `(pi/4-2/3)a^2`square units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12
Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b = 1`
Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4.
Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9 "at" (-1,2sqrt2)`.
Fill in the blank :
The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.
Solve the following :
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______
Choose the correct alternative:
Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______
The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5
Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3
Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8
Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3
Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant
Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5
The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.