मराठी

Sketch the graph of y = |x + 3| and evaluate ∫-60|x+3|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`

बेरीज

उत्तर

y = |x + 3|

At x = -3, y = 0

AQ is the line y = x + 3

When x + 3 < 0,

y = -(x + 3) = -x – 3

The graph of the line AP is AP.

∴ y =|x + 3| is shown in the graph.

`int_(-6)^1 |x + 3| dx`

`= int_(- 6)^(-3) |- x - 3| dx + int_(-3)^0 (x + 3) dx`

`= [- x^2/2 - 3x]_(-6)^(-3) + [x^2/2 + 3x]_(- 3)^0`

`= - [x^2/2 + 3x]_(- 6)^(- 3) +  [x^2/2 + 3x]_(-3)^0`

`= - [x^2/2 + 3x]_(-6)^(-3) + [x^2/2 + 3x]_(-3)^0`

`= - [(9/2 - 9) - (36/2 - 18) + 0 - (9/2 - 9)]`

`= - [- 9/2 - 0] + 9/2`

`= 9/2 + 9/2`

= 9 square unit

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.3 | Q 4 | पृष्ठ ३७५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines: y = `sqrt(16 - x^2)`, x = 0, x = 4


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


Find the area of the circle x2 + y2 = 62 


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


The area bounded by the curve | x | + y = 1 and X-axis is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×