मराठी

Draw a Rough Sketch and Find the Area Bounded by the Curve X2 = Y and X + Y = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.

बेरीज

उत्तर

The given curves are: x2 = y 

Which is an upward parabola with vertex at origin 

And line x + y = 2 ⇒ y = 2 – x

x2 = 2 – x

⇒ x2 + x – 2 = 0

⇒ (x + 2)(x – 1) = 0

⇒ x = -2 and x = 1

Now, y = 2-(-2) = 4

and y = 2 – 1 ⇒ y = 1

⇒ y = 4 and y = 1

Thus, the points of intersection are (-2, 4) and (1, 1)

The required area of the shaded region 

`= int_-2^1 (2 - "x") "dx" - int_-2^1 "x"^2 "dx"`

`= |2"x" - "x"^2/2|_-2^1 - |"x"^3/3|_-2^1`

`= 2 - 1/2 + 4 + 4/2 - 1/3 - 8/3`

`= (12 - 3 + 24 + 12 - 2 - 16)/6`

`= 9/2` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Find the area between the curves y = x and y = x2


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3


Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis


Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×