मराठी

The Area Between X = Y2 And X = 4 is Divided into Two Equal Parts by the Line X = A, Find the Value Of A. - Mathematics

Advertisements
Advertisements

प्रश्न

The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.

उत्तर

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal parts.

∴ Area OAD = Area ABCD

It can be observed that the given area is symmetrical about x-axis.

⇒ Area OED = Area EFCD

From (1) and (2), we obtain

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Application of Integrals - Exercise 8.1 [पृष्ठ ३६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 8 Application of Integrals
Exercise 8.1 | Q 8 | पृष्ठ ३६६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


State whether the following is True or False :

The area of the portion lying above the X-axis is positive.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


Choose the correct alternative:

Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______


The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


Find the area of the circle x2 + y2 = 62 


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.


The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area bounded by the curve | x | + y = 1 and X-axis is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×