मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the area between the two curves (parabolas) y2 = 7x and x2 = 7y. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.

बेरीज

उत्तर

To find the point of intersection of the curves:

Equation of curve is x2 = 7y

∴ y = `x^2/7`

y2 = `x^4/49`   ......(1)


Equation to second curve,

y2 = 7x  ......(2)

Equating equations (1) and (2) we get

`x^4/49` = 7x

⇒ x4 = 343x

⇒ x4 – 343x = 0

⇒ x(x3 – 343) = 0

⇒ x = 0

or x3 = 343

⇒ x = 7

When x = 0, y = 0

When x = 7, y = 7

∴ The points of intersection of parabolas are (0, 0) and (7, 7).

∴ Required area, A = `|int_0^7 y_1 . dx - int_0^7 y_2. dx|`

= `|int_0^7 sqrt(7x) . dx - int_0^7 x^2/7. dx|`

= `|sqrt(7) [x^(3/2)/(3/2)]_0^7 - 1/7 [x^3/3]_0^7|`

= `|2/3 xx sqrt(7) xx 7^(3/2) - 1/21 7^3|`

= `|2/3 xx 7^2 - 1/21 xx 7^3|`

= `|2/3 xx 7^2 - 1/3 xx 7^2|`

= `7^2(2/3 - 1/3)`

= `49/3` sq.units

Hence area between the two curves is `49/3` sq.units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्‍न

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`


Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed between the parabola y2 = 4ax and the line y mx


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


The area of the circle x2 + y2 = 16 is ______


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×