Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3
उत्तर
Let A be the required area.
Given equation of the curve is y = (x2 + 2)2
∴ A = `int_1^3 y "d"x`
= `int_1^3 (x^2 + 2)^2 "d"x`
= `int_0^3 (x^4 + 4x^2 + 4)`
= `[x^5/5 + 4(x^3/3) + 4x]_1^3`
= `[3^5/5 + 4(3^3/3) + 4(3)] - [1^5/5 + 4(1^3/3) + 4(1)]`
= `(243/5 + 36 + 12) - (1/5 + 4/3 + 4)`
= `483/5 - 83/15`
= `(1449 - 83)/15`
= `1366/15` sq.units
संबंधित प्रश्न
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 1 and y = 4
Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).
Find the area of the region bounded by the following curve, the X-axis and the given line:
y = 2 – x2, x = –1, x = 1
Using definite integration, area of the circle x2 + y2 = 49 is _______.
Solve the following :
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Choose the correct alternative:
Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______
Choose the correct alternative:
Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5
Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8
Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6
Find the area of the circle x2 + y2 = 16
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.
The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.
If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree
The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is
Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.
The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.
The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).