मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the area of the region bounded by the curve y = 9-x2, X-axis and lines x = 0 and x = 3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3

बेरीज

उत्तर

Let A be the required area.

Given equation of the curve is y = `sqrt(9 - x^2)`

∴ A = `int_0^3 y  "d"x`

= `int_0^3 sqrt(9 - x^2)  "d"x`

= `int_0^3 sqrt((3)^2 - x^2)  "d"x`

= `[x/2 sqrt((3)^2 - x^2) + (3)^2/2 sin^-1 (x/3)]_0^3`

= `[3/2 sqrt((3)^2 - (3)^2) + (3)^2/2 sin^-1 (3/3)] - [0/2 sqrt((3)^2 - 0^2) + (3)^2/2 sin^-1 (0/3)]`

= `0 + 9/2 sin^-1 (1) - 0`

= `9/2 (pi/2)`

∴ A = `(9pi)/4` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.7: Application of Definite Integration - Q.2

संबंधित प्रश्‍न

Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Find the area between the curves y = x and y = x2


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Fill in the blank :

Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area of the portion lying above the X-axis is positive.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×