Advertisements
Advertisements
प्रश्न
Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2
उत्तर
Let A be the required area.
Given equation of the curve is y = `sqrt(2x + 3)`
∴ A = `int_0^2 y "d"x`
= `int_0^2 sqrt(2x + 3) "d"x`
= `int_0^2 (2x + 3)^(1/2) "d"x`
= `[((2x + 3)^(3/2))/(3/2) xx 1/2]_0^2`
= `1/3[(2x + 3)^(3/2)]_0^2`
= `1/3[(4 + 3)^(5/2) - (0 + 3)^(3/2)]`
= `1/3[(7)^(3/2) - (3)^(3/2)]`
∴ A = `1/3(7sqrt(7) - 3sqrt(3))` sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.
Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.
Find the area between the curves y = x and y = x2
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`
Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.
Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9 "at" (-1,2sqrt2)`.
Fill in the blank :
The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
Choose the correct alternative:
Using the definite integration area of the circle x2 + y2 = 16 is ______
Choose the correct alternative:
Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______
The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______
The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______
The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.
The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is
The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.