Advertisements
Advertisements
Question
Find the area between the two curves (parabolas)
y2 = 7x and x2 = 7y.
Solution
To find the point of intersection of the curves:
Equation of curve is x2 = 7y
∴ y = `x^2/7`
y2 = `x^4/49` ......(1)
Equation to second curve,
y2 = 7x ......(2)
Equating equations (1) and (2) we get
`x^4/49` = 7x
⇒ x4 = 343x
⇒ x4 – 343x = 0
⇒ x(x3 – 343) = 0
⇒ x = 0
or x3 = 343
⇒ x = 7
When x = 0, y = 0
When x = 7, y = 7
∴ The points of intersection of parabolas are (0, 0) and (7, 7).
∴ Required area, A = `|int_0^7 y_1 . dx - int_0^7 y_2. dx|`
= `|int_0^7 sqrt(7x) . dx - int_0^7 x^2/7. dx|`
= `|sqrt(7) [x^(3/2)/(3/2)]_0^7 - 1/7 [x^3/3]_0^7|`
= `|2/3 xx sqrt(7) xx 7^(3/2) - 1/21 7^3|`
= `|2/3 xx 7^2 - 1/21 xx 7^3|`
= `|2/3 xx 7^2 - 1/3 xx 7^2|`
= `7^2(2/3 - 1/3)`
= `49/3` sq.units
Hence area between the two curves is `49/3` sq.units.
APPEARS IN
RELATED QUESTIONS
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.
Using integration find the area of the region {(x, y) : x2+y2⩽ 2ax, y2⩾ ax, x, y ⩾ 0}.
Find the area of the region bounded by the ellipse `x^2/16 + y^2/9 = 1.`
The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.
Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b = 1`
Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}
Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9 "at" (-1,2sqrt2)`.
Find the area of the region bounded by the following curves, the X-axis and the given lines: y = x4, x = 1, x = 5
Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.
Fill in the blank :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.
Using definite integration, area of the circle x2 + y2 = 49 is _______.
State whether the following is True or False :
The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy`
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
Solve the following:
Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.
Choose the correct alternative:
Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______
The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5
Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant
Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).
Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.