Advertisements
Advertisements
Question
Find the area of the region bounded by the ellipse `x^2/16 + y^2/9 = 1.`
Solution
Given equation of ellipse `x^2/16 + y^2/9 = 1`
The given ellipse is symmetric about both axes and has identical x and y axes.
`= y^2/9 = 1 - x^2/16`
`= y = pm 3/4 (sqrt(16 - x^2))`
Area enclosed by the ellipse = 4(Area of sector) = 4(Area OAC)
Ellipse in the first quadrant `= 4 int_0^4 y dx = int_0^4 3/4 sqrt(16 - x^2) dx`
Let `x = 4 sin theta ; dx = 4 cos theta d theta`
Hence, when x = 0, `theta = 0 ;` when x = 4, `theta = pi/2`
Required Area `= (4 xx 3)/4 int_0^(pi//2) sqrt(16 - 16 sin^2 theta). 4 cos theta d theta.`
`= 3 int_0^(pi/2) 4sqrt(1 - sin^2 theta). 4 cos theta d theta`
`= 48 int_0^(pi/2) cos^2 theta d theta`
`= 24 int_0^(pi/2) (1 + cos 2 theta)d theta`
`= 24 [theta + (sin 2 theta)/2]_0^(pi/2)`
`= 12π square unit
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.
Find the area of the region bounded by the parabola y = x2 and y = |x| .
Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4.
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
y = `sqrt(6x + 4), x = 0, x = 2`
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y = 5x + 7, x = 2, x = 8
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y + x = 8, x = 2, x = 4
Fill in the blank :
The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.
State whether the following is True or False :
The area of the portion lying above the X-axis is positive.
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Solve the following :
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Choose the correct alternative:
Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______
Choose the correct alternative:
Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______
Choose the correct alternative:
Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______
State whether the following statement is True or False:
The area of portion lying below the X axis is negative
The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x) "d"x`
The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______
The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______
The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______
Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant
Find the area of the circle x2 + y2 = 16
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.
The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.
The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.
The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is
The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is
The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.
The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.
The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.
The area bounded by the curve | x | + y = 1 and X-axis is ______.
The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.
The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.