English

The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is bafdbagd∫abf(x)dx+∫abg(x) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.7: Application of Definite Integration - Q.1 (B)

RELATED QUESTIONS

Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1.`


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.


Solve the following :

Find the area of the region bounded by the curve y = x2 and the line y = 10.


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×