English

Find the Area of the Region Enclosed by the Parabola X2 = Y, the Line Y = X + 2 and X-axis - Mathematics

Advertisements
Advertisements

Question

Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis

Solution

The area of the region enclosed by the parabola, x2 = y, the line, y = x + 2, and x-axis is represented by the shaded region OACO as

The point of intersection of the parabola, x2 = y, and the line, y = x + 2, is A (–1, 1) and C(2, 4).

     Area of OACO = ∫-12x + 2 dx  -  ∫-12 x2 dx⇒Area of OACO = x22 + 2x-12 - 13x3-12⇒Area of OACO = 222+22 - -122+2-1 - 1323 - -13⇒Area of OACO = 2 + 4 - 12-2 - 138 + 1⇒Area of OACO = 6 + 32 - 3⇒Area of OACO = 3 + 32 = 92 square units

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Application of Integrals - Exercise 8.3 [Page 375]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 8 Application of Integrals
Exercise 8.3 | Q 10 | Page 375

RELATED QUESTIONS

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area under the given curve and given line:

y = x4, x = 1, x = 5 and x-axis


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


Using definite integration, area of the circle x2 + y2 = 49 is _______.


State whether the following is True or False :

The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×