Advertisements
Advertisements
Question
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Solution
The curve y = x4 passes through the point (0, 0). The line OY is symmetric.
Now, y = x4
`dy/dx = 4x^3`
The sign of `dy/dx` changes from -ve to +ve when x moves through x = 0.
∴ x = 0 is the lowest point.
∴ Area of the region bounded by y = x4, x = 1, x = 5 and x-axis
= Area of the region PABQ
`= int_1^5 y dx = int_1^5 x^4 dx`
`= [x^5/5]_1^5 = [5^5/5 - 1/5]`
`= [5^4 - 1/5]`
`= 625 - 1/5`
`= (3125 - 1)/5`
`= 3124/5`
= 624.8 square unit
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
Find the area bounded by the curve x2 = 4y and the line x = 4y – 2
Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).
Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
Find the area of the region bounded by the following curves, the X-axis and the given lines:
y = x2 + 1, x = 0, x = 3
Find the area of the region bounded by the following curve, the X-axis and the given line:
y = 2 – x2, x = –1, x = 1
Choose the correct alternative :
Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
State whether the following is True or False :
The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.
Choose the correct alternative:
Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______
Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______
State whether the following statement is True or False:
The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x) "d"x| + |int_"b"^"c" "f"(x) "d"x|`
The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x) "d"x`
The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______
The area of the circle x2 + y2 = 16 is ______
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5
Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis
Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5
Find the area of the circle x2 + y2 = 16
The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.
Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?
Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:
Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.
Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.
If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.