Advertisements
Advertisements
Question
Find the area of the region bounded by the following curve, the X-axis and the given line:
y = 2 – x2, x = –1, x = 1
Solution
Let A be the required area.
Consider the equation y = 2 – x2.
∴ A = `int_(-1)^(1) y*dx`
= `int_(-1)^(1)(2 - x^2)*dx`
= `[2x - x^3/3]_(-1)^(1)`
= `[2 xx 1 - 1^3/3] - [2 xx (-1) - (-1)^3/3]`
= `(2 - 1/3) - (-2 + 1/3)`
= `(5)/(3) - ((-5)/3)`
∴ A = `(10)/(3)` sq. units.
APPEARS IN
RELATED QUESTIONS
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`
Find the area of the region bounded by the parabola y = x2 and y = |x| .
Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.
Find the area between the curves y = x and y = x2
Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b = 1`
Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4.
Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y = 5x + 7, x = 2, x = 8
Fill in the blank :
Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
State whether the following statement is True or False:
The area of portion lying below the X axis is negative
The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______
Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3
`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.
Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.
The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).