Advertisements
Advertisements
Question
Choose the correct alternative:
Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______
Options
`3124/5` sq.units
`3142/5` sq.units
`3124/3` sq.units
`3142/3` sq.units
Solution
`3124/5` sq.units
APPEARS IN
RELATED QUESTIONS
Find the area bounded by the curve x2 = 4y and the line x = 4y – 2
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
Choose the correct alternative :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.
Using definite integration, area of the circle x2 + y2 = 49 is _______.
State whether the following is True or False :
The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy`
Choose the correct alternative:
Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______
State whether the following statement is True or False:
The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1
Find the area of the region bounded by the parabola y2 = 25x and the line x = 5
Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3
Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis
Find the area of the region bounded by the curve x = `sqrt(25 - y^2)`, the Y-axis lying in the first quadrant and the lines y = 0 and y = 5
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______
Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`
Find the area between the two curves (parabolas)
y2 = 7x and x2 = 7y.
The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.