Advertisements
Advertisements
Question
Choose the correct alternative :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.
Options
`(3142)/(5)"sq.unts"`
`(3124)/(5)"sq.unts"`
`(3142)/(3)"sq.unts"`
`(3124)/(3)"sq.unts"`
Solution
Let A be the required area.
Consider the equation y = x4.
∴ A = `int_1^5 y*dx`
= `int_1^5 x^4*dx`
= `[(x^5)/5]_1^5`
= `(1)/(5)[x^5]_1^5`
= `(1)/(5)[(5)^5 - (1)^5]`
= `(1)/(5)(3125 - 1)`
∴ A = `(3124)/(5)"sq . units"`.
APPEARS IN
RELATED QUESTIONS
Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
y = `sqrt(6x + 4), x = 0, x = 2`
Using definite integration, area of the circle x2 + y2 = 49 is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
Solve the following :
Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.
Solve the following:
Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.
State whether the following statement is True or False:
The area of portion lying below the X axis is negative
The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______
Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis
Find the area of the circle x2 + y2 = 16
If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?
The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.
The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.
The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.
The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.