Advertisements
Advertisements
प्रश्न
Using integration find the area of the region {(x, y) : x2+y2⩽ 2ax, y2⩾ ax, x, y ⩾ 0}.
उत्तर
Given:
x2+y2≤2ax, y2≥ax, x, y≥0
⇒x2+y2−2ax≤0, y2≥ax, x, y≥0
⇒x2+y2−2ax+a2−a2≤0, y2≥ax, x, y≥0
⇒(x−a)2+y2≤a2, y2≥ax, x, y≥0
To find the points of intersection of the circle [(x−a)2+y2=a2] and the parabola
[y2=ax],
we will substitute y2=ax in (x−a)2+y2=a2.
(x−a)2+ax=a2
⇒x2+a2−2ax+ax=a2
⇒x(x−a)=0
⇒x=0, a
Therefore, the points of intersection are (0, 0), (a, a) and (a, −a).
Now,
Area of the shaded region= I
Area of I from x=0 to x=a
`=[int_0^a(sqrt(a^2-(x-a^2)))dx-int_0^asqrt(axd)x]`
Let x−a=t for the first part of the integral `int_0^a(sqrt(a^2-(x-a^2)))dx`
⇒dx=dt
`:.A_I=int_(-a)^0sqrt(a^2-t^2)dt-2sqrta/3|x^(3/2)|_0^a`
`=|t/2sqrt(a^2-t^2)+1/2a^2sin^(-1)`
`=0-(-(pia^2)/4)-(2a^2)/3`
`A_I=(pi/4-2/3)a^2`
∴Area of the shaded region = `(pi/4-2/3)a^2`square units
APPEARS IN
संबंधित प्रश्न
Find the area between the curves y = x and y = x2
Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.
Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
Find the area of the region bounded by the following curves, the X-axis and the given lines:
y = x2 + 1, x = 0, x = 3
Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.
Fill in the blank :
Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.
State whether the following is True or False :
The area bounded by the two cures y = f(x), y = g (x) and X-axis is `|int_"a"^"b" f(x)*dx - int_"b"^"a" "g"(x)*dx|`.
State whether the following is True or False :
The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.
Solve the following:
Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.
Choose the correct alternative:
Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______
The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x) "d"x`
Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3
Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2
Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3
Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______
The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.
Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?
The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.
Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.
The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).
The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.