Advertisements
Advertisements
प्रश्न
Find the area of the region.
{(x,y) : 0 ≤ y ≤ x2 , 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .
उत्तर
0 ≤ y ≤ x2 ; 0 ≤ y ≤ x + 2 ; -1 ≤ x ≤ 3
y = x2
y = x + 2
x2 = x + 2
x2 - x - 2 = 0
( x - 2 ) ( x + 1) = 0
⇒ x = - 1 , 2
∴ Required area is area of shaded portion
`Delta = int_(-1)^2 (Y_"line" - Y_"parabola" ) dx + int_2^3 Y_"line" dx`
`Delta = int_(-1)^2 ( x + 2 -x^2 ) dx + int_2^3 (x +2 ) dx`
`Delta = int_(-1)^2 [x^2/2 + 2x - x^3/3 ] + int_2^3 [ x^2/2 + 2x]`
`Delta = (2+ 4 - 8/3) - (1/2 - 2 + 1/3) + (9/2 + 6) - (2 + 4 ) `
`Delta = 10/3 + 2/3 +9/2`
`Delta = 4 + 9/2 = 17/2 ` Sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.
Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.
Find the area of the region bounded by x2 = 4y, y = 2, y = 4 and the y-axis in the first quadrant.
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
Find the area of the region bounded by the parabola y = x2 and y = |x| .
Find the area of the region bounded by the curve y2 = 4x and the line x = 3
Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 1 and y = 4
Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).
Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.
State whether the following is True or False :
The area of the portion lying above the X-axis is positive.
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
Choose the correct alternative:
Using the definite integration area of the circle x2 + y2 = 16 is ______
State whether the following statement is True or False:
The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x) "d"x| + |int_"b"^"c" "f"(x) "d"x|`
State whether the following statement is True or False:
The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1
The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______
The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______
Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3
Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2
Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6
The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.
The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`
The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.