हिंदी

Find the Area of the Region Bounded by the Parabola Y = X2 and Y = X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the parabola y = x2 and y = |x| .

उत्तर

The area bounded by the parabola, x2 = y,and the line, y = |x| , can be represented as

The given area is symmetrical about y-axis.

∴ Area OACO = Area ODBO

The point of intersection of parabola, x2 = y, and line, x, is A (1, 1).

Area of OACO = Area ΔOAM – Area OMACO

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.1 [पृष्ठ ३६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.1 | Q 9 | पृष्ठ ३६६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and x = 2 is ______.


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Find the area under the given curve and given line:

y = x2, x = 1, x = 2 and x-axis


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines:  2y = 5x + 7, x = 2, x = 8


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


Solve the following:

Find the area of the region bounded by the curve x2 = 25y, y = 1, y = 4 and the Y-axis.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Choose the correct alternative:

Using the definite integration area of the circle x2 + y2 = 16 is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×