हिंदी

The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______. -

Advertisements
Advertisements

प्रश्न

The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.

विकल्प

  • `24π + 3sqrt(3)`

  • `12π + 3sqrt(3)`

  • `12π - 3sqrt(3)`

  • `24π - 3sqrt(3)`

MCQ
रिक्त स्थान भरें

उत्तर

The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is `underlinebb(24π - 3sqrt(3))`.

Explanation:

Given: Circle 2 + y2 = 36

Parabola y2 = 9x

Solve equations to find point of intersection.

x2 + 9x – 36 = 0

⇒ x = –12, 3


Required area = `πr^2 - 2[int_0^3 sqrt(9x)dx + int_3^6sqrt(36 - x^2)dx]`

= `36π - 12sqrt(3) - 2(x/2sqrt(36 - x^2) + 18sin^-1(x/6))_3^6`

= `36π - 12sqrt(3) - 2(9π - ((9sqrt(3))/2 + 3π))`

= `24π - 3sqrt(3)` sq.units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×