Advertisements
Advertisements
प्रश्न
The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.
विकल्प
`24π + 3sqrt(3)`
`12π + 3sqrt(3)`
`12π - 3sqrt(3)`
`24π - 3sqrt(3)`
MCQ
रिक्त स्थान भरें
उत्तर
The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is `underlinebb(24π - 3sqrt(3))`.
Explanation:
Given: Circle 2 + y2 = 36
Parabola y2 = 9x
Solve equations to find point of intersection.
x2 + 9x – 36 = 0
⇒ x = –12, 3
Required area = `πr^2 - 2[int_0^3 sqrt(9x)dx + int_3^6sqrt(36 - x^2)dx]`
= `36π - 12sqrt(3) - 2(x/2sqrt(36 - x^2) + 18sin^-1(x/6))_3^6`
= `36π - 12sqrt(3) - 2(9π - ((9sqrt(3))/2 + 3π))`
= `24π - 3sqrt(3)` sq.units
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?