हिंदी

Find the area of the region bounded by the ellipse x24+y29=1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1.`

योग

उत्तर

The given ellipse is `x^2/4 + y^2/9 = 1`

Since the given curve is symmetrical about both axes.

∴ Area of ellipse = 4 areas (OABO)

∴ Requied area = 4 Area (OABO) = `4 int_0^3 x  dy`     ...[by taking horizontal strips]

`4 int_0^3 2/3 sqrt (9 - y^2)  dx`         `...[x^2/4 + y^2/9 = 1 ⇒ x^2/4 = 1 - y^2/9 ⇒ x = 2/3 sqrt (9 - y^2) (∵ x > 0)]`

`= 4 xx 2/3 [y/2 sqrt (9 - y^2) + 9/2 sin^-1  y/3]_0^3`

`= 4 xx 2/3 [(3/2 (0) + 9/2 sin^-1 (1)) - (0 - 0)]`

`= 4 xx 2/3 [9/2 (pi/2)]`

`= 4 xx (3pi)/2`

= 6π square units 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.1 [पृष्ठ ३६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.1 | Q 5 | पृष्ठ ३६६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is ______.


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region bounded by the following curves, the X-axis and the given lines:  y = x4, x = 1, x = 5


Find the area of the region bounded by the following curves, the X-axis and the given lines:

y = x2 + 1, x = 0, x = 3


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


If the curve, under consideration, is below the X-axis, then the area bounded by curve, X-axis and lines x = a, x = b is positive.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find the area of the region bounded by the curve y = (x2 + 2)2, the X-axis and the lines x = 1 and x = 3


Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area bounded by the X-axis, the curve y = f(x) and the lines x = 1, x = b is equal to `sqrt("b"^2 + 1) - sqrt(2)` for all b > 1, then f(x) is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Find the area of the regions bounded by the line y = −2x, the X-axis and the lines x = −1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×