Advertisements
Advertisements
प्रश्न
Solve the following :
Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.
उत्तर
Given equation of the curve is xy = c2
∴ y = `"c"^2/x`
∴ Required area = `int_"c"^(2"c") y*dx`
= `int_"c"^(2"c") "c"^2/x*dx`
= `"c"^2 int_"c"^(2c") (1/x)*dx`
= `"c"^2 [logx]_"c"^(2"c")`
= c2(log 2c – log c)
= `"c"^2 log ((2"c")/"c")`
= c2 log 2 sq.units.
APPEARS IN
संबंधित प्रश्न
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Find the area of the region bounded by the following curves, the X-axis and the given lines: 2y = 5x + 7, x = 2, x = 8
Choose the correct alternative :
Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.
Fill in the blank :
Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
Choose the correct alternative:
Using the definite integration area of the circle x2 + y2 = 16 is ______
State whether the following statement is True or False:
The area of portion lying below the X axis is negative
The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______
The area of the circle x2 + y2 = 16 is ______
The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______
Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis
Find the area of the circle x2 + y2 = 16
The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______
Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.
The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.
The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.
Find the area between the two curves (parabolas)
y2 = 7x and x2 = 7y.
Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).