Advertisements
Advertisements
प्रश्न
Find the area of the circle x2 + y2 = 16
उत्तर
By the symmetry of the circle, required area of the circle is 4 times the area of the region OPQO.
For the region OPQO, the limits of integration are x = 0 and x = 4.
Given equation of the circle is x2 + y2 = 16
∴ y2 = 16 – x2
∴ y = `+- sqrt(16 - x^2)`
∴ y = `sqrt(16 - x^2)` ......[∵ In first quadrant, y > 0]
∴ Required area = 4(area of the region OPQO)
= `4 xx int_0^4 y*"d"x`
= `4 xx int_0^4 sqrt(16 - x^2) "d"x`
= `4int_0^4 sqrt((4)^2 - x^2) "d"x`
= `4[x/2 sqrt((4)^2 - x^2) + (4)^2/2 sin^-1 (x/4)]_0^4`
= `4{[4/2 sqrt((4)^2 - (4)^2) + 16/2 sin^-1 (4/4)] - [0/2 sqrt((4)^2 - (0)^2) + 16/2 sin^-1 (0/4)]}`
= `4{[0 + 8 sin^-1 (1)] - [0 + 0]}`
= `4(8 xx pi/2)`
= 16π sq.units
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.
Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line `x = a/sqrt2`
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Find the area enclosed between the parabola y2 = 4ax and the line y = mx
Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).
Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`
Find the area of the region bounded by the following curves, the X-axis, and the given lines:
y = `sqrt(6x + 4), x = 0, x = 2`
Find the area of the region bounded by the following curve, the X-axis and the given line:
y = 2 – x2, x = –1, x = 1
Choose the correct alternative :
Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.
Fill in the blank :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.
State whether the following is True or False :
The area of the portion lying above the X-axis is positive.
Solve the following :
Find the area of the region bounded by the curve y = x2 and the line y = 10.
Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______
The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______
The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______
Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2
Find the area of the circle x2 + y2 = 62
The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.
The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.
If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).