हिंदी

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.

उत्तर

 

Consider the function f'(x) = sin3x - cos3x.

f'(x)= 3cos3x+3sin3x

=3(sin3x + cos3x)

`=3sqrt2{sin3xcos(pi/4)+cos3xsin(pi/4)}`

`=3sqrt(2){sin(3x+pi/4)}`

For the increasing interval f'(x)>0

`3sqrt2{sin(3x+pi/4)}>0`

`sin(3x+pi/4)>0`

0<3x+`π/4`<π

`=>0<3x<(3pi)/4`

⇒ 0 < x < π/4

Also

`sin(3x+pi/4)>0`

when, `2pi<3x+pi/4<3pi`

=>`(7pi)/4<3x<(11pi)/4`

Therefore, intervals in which function is strictly increasing in  0 < x < π/4 and 7π/12< x <11π/12.

Similarly, for the decreasing interval f'(x)< 0.

`3sqrt2{sin(3x+pi/4)}<0`

`sin(3x+pi/4)<0`

`=>pi<3x+pi/4<2pi`

`=>(3pi)/4<3x<(7pi)/4`

⇒ π/4 < x <7π/12

Also

`sin(3x+pi/4)<0`

When

 `3pi<3x+pi/4<4pi`

`=>(11pi)/4<3x<(15pi)/4`

`=>(11pi)/12

The function is strictly decreasing in `pi/4and  `(11pi)/12

π4<x<7π12 and 11π12<x<π" data-mce-style="position: relative;" data-mce-tabindex="0">π4<x<7π12 and 11π12<x<π

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Find `dy/dx,if e^x+e^y=e^(x-y)`


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The function `1/(1 + x^2)` is increasing in the interval ______ 


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×