English

Evaluate ∫ 4 1 ( 1 + X + E 2 X ) D X as Limit of Sums. - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.

Sum

Solution

`I = int_1^4 (1 + x +e^(2x)) dx = int_1^4 (1+x) dx + int _1^4 e^(2x) dx`

`= I_1 +I_2`
 

`h = (b-a)/n = (4-1)/n = 3/n `

`I_1 = int_1^4 (1 + x) dx = lim_(n->oo)[3/n[f(1) + f(1 +3/n) + ....... f (1 +((n-1))/n 3)]]`

` = 3"lim_(n-> oo) [1/n[(1 + 1) +(1+(1+3/n)+....)(1+((n-1))/n3)]]`

` = 3"lim_(n-> oo) [(2n)/n + 1/n [0.(3/n)+1(3/n)+....(n-1) 3/n]]`

` = 3"lim_(n-> oo) [2 + 1/n^2 [3 + 2(3) + .... (n -1 )3]]`

` = 3"lim_(n-> oo) [2 +3/n^2 [((n-1)n)/2]]`

` = 3["lim_(n-> oo) (2+3/2(1-1/n))]`

`=3(2+3/2)=6 +9/2=21/2`

`I_2 = int_1^4 e^(2x) dx `

`I_2 = "lim_(n-> oo) [3/n[f(1)+......+f(1+((n-1))/n3)]]`

` = "lim_(n-> oo) [3/n[e^2 + e^(2(1+3/n)) + ......e^(2(1+((n-1))/n 3)]]]`

`= 3e^2 "lim_(n -> oo )[1/n[1 + e^(2 (3/n))+....e^(2(3((n-1))/n))]]`

` = 3e^2 lim_(n -> oo ) 1/n [(e^(2(3/n)^n) -1)/(e^(2(3/n)^n)-1) ]`

` = 3e^2 lim_(n -> oo ) 1/n[(e^6 -1)/(e^(6/n) -1)]`

` = 3e^2(e^6 - 1) "lim_(n -> oo) (1/n)/(e^(6/n)-1)`

`=3e^2 (e^6 - 1) "lim_(n -> oo )((-1)/n^2)/(e^(6/n)((-1)/n^2)xx6)`

`=1/2e^2 (e^6-1)= (e^8 - e^2 )/2`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×