हिंदी

Find the Area of the Smaller Region Bounded by the Ellipse `X^2/9 + Y^2/4` And the Line `X/3 + Y/2 = 1` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the smaller region bounded by the ellipse `x^2/9 + y^2/4` and the line `x/3 + y/2 = 1`

उत्तर

The area of the smaller region bounded by the ellipse, `x^2/9 + y^2/4` , and the line, `x/3 + y/2 = 1`, is represented by the shaded region BCAB as

∴ Area BCAB = Area (OBCAO) – Area (OBAO)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Application of Integrals - Exercise 8.3 [पृष्ठ ३७५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 8 Application of Integrals
Exercise 8.3 | Q 8 | पृष्ठ ३७५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1.`


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area bounded by the curve x2 = 4y and the line x = 4– 2


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4. 


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Using integration find the area of the triangle formed by negative x-axis and tangent and normal to the circle `"x"^2 + "y"^2 = 9  "at" (-1,2sqrt2)`.


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curve, the X-axis and the given line:

y = 2 – x2, x = –1, x = 1


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


Choose the correct alternative :

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Solve the following :

Find the area of the region bounded by y = x2, the X-axis and x = 1, x = 4.


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


State whether the following statement is True or False:

The equation of the area of the circle is `x^2/"a"^2 + y^2/"b"^2` = 1


The area of the region lying in the first quadrant and bounded by the curve y = 4x2, and the lines y = 2 and y = 4 is ______


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find the area of the circle x2 + y2 = 16


The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×