English

Find the Area Bounded by the Parabola X = 8 + 2y − Y2; the Y-axis and the Lines Y = −1 and Y = 3. - Mathematics

Advertisements
Advertisements

Question

Find the area bounded by the parabola x = 8 + 2y − y2; the y-axis and the lines y = −1 and y = 3.

Solution


The parabola cuts y-axis at (0, 4) and (0, −2).
Also, the points of intersection of the parabola and the lines y = 3 and y = −1 are B(5, 3) and D(5, −1) respectively.
Therefore, the area of the required region ABCDE
\[A = \int_{- 1}^3 x d y\]
\[ = \int_{- 1}^3 \left( 8 + 2y - y^2 \right) d y\]
\[ = \left[ 8y + y^2 - \frac{y^3}{3} \right]_{- 1}^3 \]
\[ = \left\{ 8\left( 3 \right) + \left( 3 \right)^2 - \frac{\left( 3 \right)^3}{3} \right\} - \left\{ 8\left( - 1 \right) + \left( - 1 \right)^2 - \frac{\left( - 1 \right)^3}{3} \right\}\]
\[ = \left\{ 24 + 9 - 9 \right\} - \left\{ - 8 + 1 + \frac{1}{3} \right\}\]
\[ = \left( 24 \right) - \left\{ - 7 + \frac{1}{3} \right\}\]
\[ = 24 + 7 - \frac{1}{3}\]
\[ = 31 - \frac{1}{3}\]
\[ = \frac{92}{3}\text{ sq . units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Areas of Bounded Regions - Exercise 21.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 21 Areas of Bounded Regions
Exercise 21.4 | Q 2 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the area bounded by the curve y = sin x between x = 0 and x = 2π.


Find the area of the region lying in the first quandrant bounded by the curve y2= 4x, X axis and the lines x = 1, x = 4


Using integration, find the area of the region bounded between the line x = 2 and the parabola y2 = 8x.


Sketch the region {(x, y) : 9x2 + 4y2 = 36} and find the area of the region enclosed by it, using integration.


Draw a rough sketch of the graph of the function y = 2 \[\sqrt{1 - x^2}\] , x ∈ [0, 1] and evaluate the area enclosed between the curve and the x-axis.


Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and x = 8.


Sketch the graph y = | x + 1 |. Evaluate\[\int\limits_{- 4}^2 \left| x + 1 \right| dx\]. What does the value of this integral represent on the graph?


Find the area of the region bounded by the curve xy − 3x − 2y − 10 = 0, x-axis and the lines x = 3, x = 4.


Compare the areas under the curves y = cos2 x and y = sin2 x between x = 0 and x = π.


Find the area of the region bounded by x2 = 4ay and its latusrectum.


Find the area bounded by the curve y = 4 − x2 and the lines y = 0, y = 3.


Draw a rough sketch of the region {(x, y) : y2 ≤ 3x, 3x2 + 3y2 ≤ 16} and find the area enclosed by the region using method of integration.


Using integration, find the area of the region bounded by the triangle whose vertices are (−1, 2), (1, 5) and (3, 4). 


Sketch the region bounded by the curves y = x2 + 2, y = x, x = 0 and x = 1. Also, find the area of this region.


Find the area of the region enclosed by the parabola x2 = y and the line y = x + 2.


Find the area of the region bounded by the curve y = \[\sqrt{1 - x^2}\], line y = x and the positive x-axis.


Using integration, find the area of the following region: \[\left\{ \left( x, y \right) : \frac{x^2}{9} + \frac{y^2}{4} \leq 1 \leq \frac{x}{3} + \frac{y}{2} \right\}\]


Find the area of the region bounded by the parabola y2 = 2x and the straight line x − y = 4.


The area of the region formed by x2 + y2 − 6x − 4y + 12 ≤ 0, y ≤ x and x ≤ 5/2 is ______ .


The area of the region (in square units) bounded by the curve x2 = 4y, line x = 2 and x-axis is


The area bounded by the curve y2 = 8x and x2 = 8y is ___________ .


The area bounded by the parabola y2 = 8x, the x-axis and the latusrectum is ___________ .


The area bounded by the y-axis, y = cos x and y = sin x when 0 ≤ x ≤ \[\frac{\pi}{2}\] is _________ .


The area of the circle x2 + y2 = 16 enterior to the parabola y2 = 6x is


Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3, is


Using integration, find the area of the region bounded by the parabola y= 4x and the circle 4x2 + 4y2 = 9.


Find the area of the region included between y2 = 9x and y = x


Find the area bounded by the curve y = `sqrt(x)`, x = 2y + 3 in the first quadrant and x-axis.


Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π


Area of the region bounded by the curve y = cosx between x = 0 and x = π is ______.


The area of the region bounded by the circle x2 + y2 = 1 is ______.


Using integration, find the area of the region `{(x, y): 0 ≤ y ≤ sqrt(3)x, x^2 + y^2 ≤ 4}`


The area of the region bounded by the line y = 4 and the curve y = x2 is ______. 


Area of the region bounded by the curve y = |x + 1| + 1, x = –3, x = 3 and y = 0 is


Area lying in the first quadrant and bounded by the circle `x^2 + y^2 = 4` and the lines `x + 0` and `x = 2`.


Find the area of the region bounded by `x^2 = 4y, y = 2, y = 4`, and the `y`-axis in the first quadrant.


The area bounded by the curve `y = x|x|`, `x`-axis and the ordinate `x` = – 1 and `x` = 1 is given by


Let a and b respectively be the points of local maximum and local minimum of the function f(x) = 2x3 – 3x2 – 12x. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to ______.


Make a rough sketch of the region {(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2} and find the area of the region, using the method of integration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×